PROBLEMS OF COUPLED THERMOELASTICITY
FOR A PARALLELEPIPED

A. V. Berdakchiev UDC 539.377

We present the solution of quastatic problems of coupled thermoelasticity for a parallele-
piped.

General coupled problems in the mechanics of continuous media were formulated in {1]. The problems

of coupled thermoelasticity were reviewed in [{2-5]. For a linear isotropic homogeneous thermoelastic medium

under small deformations, the balance and heat-flux equations have the form [5]
- . . C 1)

VA, = A+ we +X; =0, (=1 2 3),

1

r

_}0_ 17,

w
€=Uy, A= o n T Q:—M—, v = (3% 4 2p) .

AB — 6—ne+Q=0, (2)

Since the case of arbitrary volume forces always reduces to the case when the volume forces have a potential
[7], we shall assume that Xj = G j. The initial conditions are

”i|t=0 = ]ci (Xk), e[t=0 =h (xh)' (3)
The solution of the quasistatic problem of coupled thermoelasticity consists of the integration of the system

of equations (1) and (2) subject to the initial conditions (3) and some boundary conditions for uj and 6 which
will not be specified at the moment.

Integrating (2) with respect to time from 0 to t and using (3), we obtain

t t 4
6 h " ( )
— :*-j\ Aedr—ne+ L (LE —_— +7]fh,h+ s QdT ) .
A
0 " 0
Substituting the expression (4) for 0 into (1) we find
t 5)
RAL; + (b + 1) e, =y [ (86), dv - (L — G) ., (
0
where Aj = A + Y%, We shall write uj inthe formu;=vi+wj, e = ey + ey, ey = Vk k, €y = Wk k, where vj is
. the solution of the system
pAY; + (M +p) e, =0, 6)

and wj is an arbitrary particular solution of the system (5). We shall seek w; in the form wj = ¢ j. Substitut-
ing this expression into (5) and noting that

A (grad ) = grad div (grad @) — rot rot (grad ) = grad AQ,
we find &: .
t
o=y [oariF, oy

0

%
Ay 2p '
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where F is an arbitrary particular solution of the equation (Aj + 2u)AF = yn L—G. Therefore,
L
S U EE Uy j B dt+F ;.
0

It follows from (7) that
‘
e=e,+ v } ABdT + AF.
]
Substituting (8) into (4), we obtain

t ,
0— k2 j Abdt = M — nue,,
4]
(i 20) B2 == % (b + 20), (g + 20) M = = [(A 4 2u) L + nG].

1
Eliminating \” Ab8dt  from (8) and (9) we find the simplest expression for e:
0-1

, A+ 2u)e= (A + 2w e, 70 —G.
It follows from (9) that

6 — k2AD = M — e,

(8)

(9)

(10)

(11)

In some problems vj, and consequently also ey, can be found without using Eq. (11). By substituting the value

of ey into (11) we then obtain an equation for § which has a known right-hand side and is supplemented by

some boundary condition. Having found 8, we can determine uj from Eq. (7).

In an orthogonal Cartesian coordinate system Ox x,x;, the components of the stress tensor are

’ s O
oy =20 % o0 == (A 2p)e— 0 —2u (f)ﬁt J.-ﬂ) ,

X4 Ox,  Ox3)
o =2 22 L re— 0, =208 e 4o,
0x, 0x3
Ouy,  Ou, Ous | 6u1> ' Ou, 6113)
O — W | — —= |y Oy = — —, Oy = —_— — | .
S (6}(2 + 0,\'1) © s (axl " Oxs w = (0x3 v 0x
The system (6) will be written in the form

de, Owyg 0w, de, 0wy dwys
%1———::—————, M1——~——:::-——~———~—

0xy 0x, 0x3 0x, Oxs Jxy

Ky

% — amv? . amvi , (74152 | }“1_)
a.«\'s 6)(1 0x2

v, O0v, |, Ou, dvy;  Ou,
€y = — + ) vl T . »
Oxg  0x,  Oxy 0x,  Ox;
0y = 0 0 _ 0w oo

) O} v8 .
0xs  0Ox, dx;  Ox,

(12)

(13)

(16)

a7

(18)

Suppose now we are given a parallelepiped, and x; = 0, x; =a, x, =0, % =b, x3 =0, x3 = ¢ are the equations
of its sides. By using the methods explained below we can find the solution of the problems where one is given
normal displacements, tangential stresses, and the heat flux at any k sides (k =0, 1, 2, ..., 6) of the paral-
lelepiped, and on the remaining 6 — k sides one is given tangential displacements, normal stresses, and the

temperature. However, the consideration of all possible variants would make this paper excessively long.

We shall therefore consider only the case k = 6. The solution of this problem will be obtained in the form of

a sum of solutions of the simpler problems.
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Problem 1. Normal displacements, tangential stresses, and the heat flux are given at all sides of the

parallelepiped:
00
g0 = 8;, Ople,—0=S1, Ople,m0o =Ty, T = gy, (19)
1 lxy=0
06
ui]x,::a = 0, Otglx=a = Sa, Gialx,=a =T, 'a—)‘c" = (o, (20)
1 lx,=a
09
Uole,—0 == 03, Opalr,—0 = S3, Ogalx,—0 = T3, e = g, (21)
2 |xp=0
al
u3|x2=b =6, Cpalr,—p = S, G-zz‘xz:b =T, ’é;—‘ = Q4 (22)
’ Ay lxy=D
00
U31x3=0 = 65, 0’13]x,=0 = 357 0231x3:0 == Ts’ o = g5, (23)
dx:?, xy =0
08 |
u?:fxaz‘f = 667 623'1(3:0 = SGv G2Slx3:c = Tﬁ, —a—x— .= G6- (24)
3 fxy=c
The following expressions will be useful in the discussion below:
a9
u1|x1=0 =0, Uﬂlx,:ﬂ =0, Ouale,=0 = 0, — =0, (25)
0)61 =0
00
Uly=a = 0, Ople,=e =0, Ogglyyma =0, — =0, (26)
v 3%y |x,=q
09
Usle,=0 = 0, Opaluy=0 = 0, Oyglypmo =0, — =0, (27)
GXQ x,=0
a0 .
u21x2=b =0, Gi?lxz::b = Ov ‘323‘x2=b = 07' - = 0, (28)
) 6x2 x2=b
06
Ugle,mo0 =0, Oygly,m0 =0, Opgly,m0 =0, — =0, 29)
6X3 x3=0
08
© Uslxy=c = 0, 013]x3=c =0, Uzsl:@:e == 0, v ==0. (30)
. 0X3 |gp=c

Problem 1a. Let us suppose that the boundary conditions have the form (19), (20), and (27)-(30). The
unknown functions will be expanded in Fourier series as follows:

~\-_ev o

Uy = Z Uymn, (X1, l) COS Uy X, COS Ppis, Uy = Z Ugrnn (X1, t) STl Ol Xs COS Br X3,
m,n=0 m,n=0
+o
Uz = 2 Ugmn (xia £) cos X, sin Pz,
m,n=0
oo
6= O,0n (%1, ) COS QUp x5 COS PBrXa,
m,n=0

where oy = ™m/b and Bp = m/c. The expansions of other functions can easily be written down, and will not
be given here. The corresponding expansion coefficients will be denoted by indices m and n. In the expres-
sions below, repeating indices m and n are not summed over., The conditions (27)-(30) are satisfied. Using
(10) in (12) we obtain, instead of (12)-(18), for each m and n

Oygmn = (M 4 21) eymn — Gmn — 21 (@mblamn —+ Balizmn)s (31)
Ooamn == 2M8mtlamn + Amn — Vmn,  Ozsmn = 2WBnllsmn + Mmn — VO,
Otlymn - { Otz
Ciamn = W (—5)%621- — O5m”1mn) » Oigmp = W (ﬁ - Bn”imn) s (32)
1 1
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Oozmpn = — (ﬁnuzmn -+ am”.’imn):

Oemn
Lt —a’ﬂ = Qmn,  (Lumn = C®pzmn — Ba®pamn), (33)
% :
HyOnCpmn == QM — PGy, (34)
0xy
Oy
M1[?’n€vmn = ammvlmn_*al;:ﬂl‘ ’ (35)
OUsmn
Comn = ‘5‘1‘% + CmUamn + ﬁnUSmn: Wpimn = ﬁnvzmn — %pUsmn, (36)
_ 6037”71 aUZmn/
Oyomn = —— —a‘x— '—ﬁnvimnr Op3mn = T + XmPYimn-
: “ (37)
Relations (7), (11), and (3) give
f
08, oF,,,
Hymn = Ytmn + V1 Ev — dt + I » (38)
J o 0x oxy
i
Usmn = Yamp — Vi%m J emndT - OCman: (39)
0
¢
Usmn == Ugmn ;Vif’n g emnd’c_ﬁnme (40)
oy
. aZQmﬂ \ . .
6mn — k2 (W - }‘n%memn) - ‘an — WCmns emnlt:O = hmru (41 )
\ 1
where Ainn = ol + 4. Multiplying (34) and (35) by oy and By, respectively, and adding, we obtain
"417\31115v7nn == i%n_ {42)
dxy
Substituting Qyyp from (33) into (42), we find
€ymn = Cimn (t) exp (_ 7anx1) ‘i_ Comn ({) exp ()Vnnz-’ci), (43)
Qomn = Rihmn [ Cimn () ?XP (= Mnnts) + Camn (£) €XP (App )] (44)
Expressing Qymn in terms of the displacements by using (37), we obtain
' ] (45)
Comn 77 % - Rmm ~eymn r2rznvimn ‘{" a—Rﬂ 5
dxy Jx,
where Ry SomVomn + SnVsmn- JTherefore,
1 OR 0?R 02,
Vimn = Qo — — 22 mn_ 32 Rl = umn 52
T M ( "oy ) oz~ b Ronn PP
Hence, using (43) and (44),
Rmn = Amn%2x1 [C1mn (t) exp (ﬂ A’mnxi) — Camn (t) exp ()anxi)] '+
~+ Camn (t) €Xp (— )”mnxi) -+ Comn (t) exp (%mnxi): (2%2 =1 %1),
Ouumn i1y 2) = (s — 45) Cumn () €3P (= hemnt) +- (5 + ) Caen (6 (46)
X exp (Apnty) + Camn () €Xp (— Apnity) — Camn () €XD (AmnXy),
mn mn
(2hmnns= 1 4 2,). (47)
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Multiplying (34) and (35) by By and @y,, respectively, and subtracting term by term, we find

I ( a‘ﬂv‘zmn amv3mn >
mn = @ n -
Opimn 7\«;27”1 \ m %, +[5 ax, (48)
Substituting (37) into (48), we obtain
620‘) mn
_0—1;'32_‘ - }‘r?mmvlmn == O’
1 (49)
Optmn = Csmn () €XP (— AnXe) - Comn (£) €XP (Amnis)-
Since o mvomn + AnVamn = Bmn @0d BpVomn ~ @mVsmn = Wyimn We find, by using (46) and (49),
' 7\31;; Ugmn = OmAmn¥aXy [Cimn () €XP (— Amnks) — Camn (£) €XP (Apn¥y)] + (50)
_l— Qm [Camn (t) exp (_' }‘/mnxi) + Camn (t) exp (7“n111x1)] _I_ ﬁn [C5m7l (t) exp (_ }"mnxi) + Comn (t) eXp (}"mnxl)]’
)\r.?m Usmn = 5117‘mn%2x1 [Cimn (t) exp (_ 7va1-’¢1) — Comn (t) exp (}‘mnxl')] + .
+ f’n [CSmn (t) exp (— }‘nmxi) + Cima (t) exp (xmnxl)] — Gy [CSTnn (Z) exp ("“ ?\/mnxi) + Coemn (t) exp (}"muxi)]‘ (51)
Using (32) we obtain for each m and n, instead of (19) and (20),
u1m71|x1=0 = 6imn (t)v uinmlx,:a = 6'zmn (t)v (52)
Oty du
__’l"Q?unn =S nta —fmn m =
b ( . — iy ) =S ( ) =T, (53)
’Bu.z [ 0 mn
H (———m—n - a’“u”m\ = S‘.’mn (f), w (_Lia_ - ﬁnuimn) - Tamn (t); (54)
c?x, /lx=a (9)64_ x1=a
30, 99
T i (@) | = o ).
o M ) Eo @ (55)
By a direct calculation based on (39) and (40) we obtain
56
ﬁnuZmn — Omlsmn :bﬁnv;‘zmn — &mUsmn = Buimn, ( )
and hence we obtain, using (52)-(54),
7] e
m‘ - ﬁnsimn - a'mTimn; H,—wﬁm = ﬁnSL’mn - o‘mszn- (57)
axi x,=0 axi X 1=a

Substituting (49) into (57) we find c5'mn(t) and cgmn(t). A direct calculation using (38)-(40) and (45) then gives

ORmy

0 9 d
}”g'm Uympn + —— (@Cmlbamn + Batlgmn) = Mnn Vrmn + —— (@mUsmn =+ Brlsmn) = xznn Uimn T = Qumn
0x, ) a)C1 X1
and using (52)-(54) we obtain
58
Hgvmnlxl=0 = q'mSimn + ﬁnTimn + QP}“fnn Bimny ( )
BQomaley=a = &mSamn + BaTamn + 2”’"3111 Bamn- (59)

Substituting (44) into (55) and (59) we find c{p,pn(t) and ¢y pyy(t). The conditions (52) give, using (38) and (55),

t .
oF
[017)1n + Y1 S‘ Timn (T) dT + —n = 6imn (t)v (60)
‘0 ax1 x£y=0
' g oF
[Uimn Vi S’ Gamn (T) dv + _a_;"l] = 8ymn (2). (61)
1

x,=a
0 ,
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Substituting ({17) into (60) gnd (61) and noting that cymn(t) and cypyp(t) are nowknown, we find cymn(t) and cymp(t).
We define a new function §,,,(x(, t) by

2

o~ X7
Brun (1, 1) = B (51, 0) €3 (— K 8) + Gun (O %1+ 5 12 () — Gumn () (©2)

Substituting (62) into (41) and (55) we obtain

= 62677171 A )

emn = K (3)6% i an — N exp (kz}”zmt) Cymns (63)
96 b 5 50
T = mn = = O 64
(9)61 xy=0 0: axi £y =0 > emn‘t—-o o

where an, lggnn are known, and ey, have been found by us. The solution of the problem (63) and (64) is
known [8]. The quantities ujpmp (X, t) (i=1, 2, 3) can now be found from (38)-(40) by using (47), (50), and
(51). The problem is therefore solved. '

Problem 1b. Suppose the boundary conditions have the form (21), (22), (25), (26), (29}, and (30). The
unknown functions will be expanded in a Fourier series of the form
Uy = u(D) (%3, 1) sinppx;cos s,

mn
m,n=0

+oo
— 1
=¥ ufl), (6 £)cospnrscosPyr,
m,n==0 .
-0
s = 2 ué}n)n (xﬂ’ t) COS YmXy SII ﬁnx&
m,n=0

oo

0= Z Blan (X2, 1) COS Py COS P X,

m,n=0

where vy, = mm/a and B, = m/c. The corresponding expansions for other functions can easily be written
down. Conditions (25), (26), (29), and (30) are satisfied. The solution of the problem can now be solved in
the same way as Problem la.

Problem le. Suppose the boundary conditions have the form (23)-(28). The unknown functions will be
expanded in a Fourier series of the form

pu.
Lo .
= 2 H — <}

1y 2 w2 (x5, 1) COS QKo SINEyxy, = 2 U@ (xs, 1) Sill Gy COS g Xy,

m, =0 m,n=0
(S S

ug = 2 uf®) (5 1) COSyXycosEpxy, 0= 2 052 (x5, £)  COSQUpXyCOSEnXy,

m,n=>0 m,n=0

where ay, = mm/b and £, = m/a. The corresponding expressions for the other functions can easily be written

down. Conditions (25)-(28) are satisfied. The problem can now be solved in the same way as Problem la. The
solution of the general problem 1 with boundary conditions (1 9)-(24) will now be obtained as a sum of the solu-
tions of the problems 1a, 1b, and lc.

NOTATION

uj, displacement vector; § = T—T;, temperature drop (the difference between the instantaneous temper-
ature T and the equilibrium temperature Ty); A and u, Lamé constants; A, thermal conductivity, cg, heatcapa-
city at constant deformation; w, heat generated per unit volume per unit time; a;, heat expansion coefficient;
Xj, volume forces; G, potential of the volume forces; fi(x) and h(xk), given functions of coordinates xj k=1,
2, 3); t, time; Oijs components of the stress tensor; 2, b, and c, lengths of the edges of the parallelepiped; 6,
S;, Ty, and gj, given functions; for i = 1, 2 they are functions of x,, %3, and t, for i =3, 4 they are functions
of x,, X3, and t, and for i =5, 6 they are functions of x;, X, and t. The quantities Cimp(t) are unknown func-
tions of time.
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